用创新的技术,为客户提供高效、绿色的驱动解决方案和服务

以科技和创新为客户创造更大的价值

新闻资讯

大数据业务安全制度(大数据业务安全制度有哪些)

时间:2024-08-09

什么是大数据治理?

大数据治理是指充分运用大数据、云计算、人工智能等先进技术,实现治理手段的智能化。

数据治理流程是从数据规划、数据采集、数据储存管理到数据应用整个流程的无序到有序的过程,也是标准化流程的构建过程。根据每一个过程的特点,我们可以将数据治理流程总结为四个字,即“理”、“采”、“存”、“用”。

数据治理是一项管理数据的全方位过程,它涉及到数据的定义、分类、质量、安全、使用和维护等方面。随着数字化时代的到来,数据已经成为了企业成长的核心竞争力之一,而数据治理则是保障这一竞争力的重要保障。首先,数据治理需要定义数据的含义和分类。

数据治理是流程、角色、政策、标准和指标的集合,可确保有效和高效地使用信息,使组织能够实现其目标。它建立了流程和职责,以确保整个企业或组织中使用的数据的质量和安全性。数据治理定义了谁可以对什么数据、在什么情况下、使用什么方法采取什么行动。

(1)什么是安全大数据?

大数据安全的防护技术有:数据资产梳理(敏感数据、数据库等进行梳理)、数据库加密(核心数据存储加密)、数据库安全运维(防运维人员恶意和高危操作)、数据脱敏(敏感数据匿名化)、数据库漏扫(数据安全脆弱性检测)等。

嵌入式安全:在涉及大数据的疯狂竞赛中,大部分的开发资源都用于改善大数据的可升级、易用性和分析功能上。只有很少的功能用于增加安全功能。 但是,你希望得到嵌入到大数据平台中的安全功能。你希望开发人员在设计和部署阶段能够支持所需要的功能。

数据规模:在大数据时代,数据的规模远远超过了传统数据。大数据通常涉及数百TB甚至PB级别的数据,而传统数据通常只有GB或MB级别。因此,大数据安全需要处理更大量的数据,这需要更强大的计算和存储能力,以及对数据的更精细的管理和控制。

个人感觉所谓的大数据安全就是不要早陌生的软件中去填写个人信息等,不要随意的注意账号;而且在企业中,管理者都是很注重数据安全这块的,这时候我们就可以选择域之盾来进行对电脑文件加密、U盘管理及员工上网行为管控等,挺方便的。

大数据安全的六大挑战

挑战六:大数据网络的相对开放性使得安全加固策略的复杂性有所降低 在大数据环境下,数据的使用者同时也是数据的创造者和供给者,数据间的联系是可持续扩展的,数据集是可以无限延伸的,上述原因就决定了关于大数据的应用策略要有新的变化,并要求大数据网络更加开放。

大数据的发展离不开电信网络、IDC,甚至工控系统等关键基础设施,其安全可靠同样依赖于这些基础设施,受供应链全球化、产业私有化的影响,网络与关键基础设施间的安全日趋复杂,一国的大数据可能存放在别国的网络中,一国的基础设施可能同时服务于多个国家,高度的全球相互依赖性,挑战原有的国家主权观念。

第一投资增长乏力。现在我们总的来说,投资还是在一个下降的趋势,我们的消费热点也不多,我们的工业产品的价格持续下降,生产要素的成本上升,小微企业融资难、融资贵的问题突出,我们经过发展方式总体上说还是比较粗放,创新能力不足,特别是产能过剩问题突出。

大数据时代数据安全策略

范宏伟进一步指出,在有限的成本中,把数据保护实现最大化,则需要CIO要在实施成本、宕机时间、解决方案达成一个平衡。因此,开展数据保护或者对于整体数据容灾系统应该从底层的数据备份恢复开始做起,逐步开始数据复制、应用切换、业务接管等四个方向。

大数据时代数据安全与隐私保护的对策主要包括加强立法保护、提升技术防护、推动行业自律和提高公众意识等方面。首先,立法保护是确保数据安全与隐私的基石。政府应制定和完善相关法律法规,明确数据收集、存储、使用和传输的规范,界定数据所有权和使用权,为数据处理活动提供法律依据。

数据加密:在数字化时代,对敏感的个人数据进行加密至关重要,这样可以确保数据在传输和存储过程中的安全性。使用强大的加密算法和安全协议,例如SSL(Secure Sockets Layer)和TLS(Transport Layer Security),可以大大提高数据的安全性。

加强数据权限管理,建立严格的权限控制机制,记录每个人的数据访问和操作日志。 在数据采集、存储、处理环节做好隐私保护措施,如匿名化或脱敏处理个人敏感信息。 建立完整的安全风险管理措施,包括安全政策、权限管理、审查访问、安全报告和漏洞评估。

在大数据时代,网络安全防护面临着一些挑战和难点。以下是其中一些主要的问题: 数据规模和复杂性:大数据环境中产生的数据量巨大且复杂多样,这增加了安全分析和监测的复杂性。攻击者可以利用这些数据进行隐蔽的攻击,因此需要更强大的安全防护来应对。